3.28.32 \(\int \frac {(1-2 x)^{3/2}}{\sqrt {2+3 x} \sqrt {3+5 x}} \, dx\) [2732]

3.28.32.1 Optimal result
3.28.32.2 Mathematica [C] (verified)
3.28.32.3 Rubi [A] (verified)
3.28.32.4 Maple [A] (verified)
3.28.32.5 Fricas [C] (verification not implemented)
3.28.32.6 Sympy [F]
3.28.32.7 Maxima [F]
3.28.32.8 Giac [F]
3.28.32.9 Mupad [F(-1)]

3.28.32.1 Optimal result

Integrand size = 28, antiderivative size = 98 \[ \int \frac {(1-2 x)^{3/2}}{\sqrt {2+3 x} \sqrt {3+5 x}} \, dx=-\frac {4}{45} \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}+\frac {272}{225} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )-\frac {202}{225} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right ) \]

output
272/675*EllipticE(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)-202 
/675*EllipticF(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)-4/45*( 
1-2*x)^(1/2)*(2+3*x)^(1/2)*(3+5*x)^(1/2)
 
3.28.32.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.83 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.90 \[ \int \frac {(1-2 x)^{3/2}}{\sqrt {2+3 x} \sqrt {3+5 x}} \, dx=-\frac {2}{675} \left (30 \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}+136 i \sqrt {33} E\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right )|-\frac {2}{33}\right )-35 i \sqrt {33} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right ),-\frac {2}{33}\right )\right ) \]

input
Integrate[(1 - 2*x)^(3/2)/(Sqrt[2 + 3*x]*Sqrt[3 + 5*x]),x]
 
output
(-2*(30*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x] + (136*I)*Sqrt[33]*Ellip 
ticE[I*ArcSinh[Sqrt[9 + 15*x]], -2/33] - (35*I)*Sqrt[33]*EllipticF[I*ArcSi 
nh[Sqrt[9 + 15*x]], -2/33]))/675
 
3.28.32.3 Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.05, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {113, 27, 176, 123, 129}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(1-2 x)^{3/2}}{\sqrt {3 x+2} \sqrt {5 x+3}} \, dx\)

\(\Big \downarrow \) 113

\(\displaystyle \frac {2}{45} \int \frac {59-272 x}{2 \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {4}{45} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{45} \int \frac {59-272 x}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {4}{45} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\)

\(\Big \downarrow \) 176

\(\displaystyle \frac {1}{45} \left (\frac {1111}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {272}{5} \int \frac {\sqrt {5 x+3}}{\sqrt {1-2 x} \sqrt {3 x+2}}dx\right )-\frac {4}{45} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\)

\(\Big \downarrow \) 123

\(\displaystyle \frac {1}{45} \left (\frac {1111}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx+\frac {272}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {4}{45} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\)

\(\Big \downarrow \) 129

\(\displaystyle \frac {1}{45} \left (\frac {272}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )-\frac {202}{5} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )\right )-\frac {4}{45} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\)

input
Int[(1 - 2*x)^(3/2)/(Sqrt[2 + 3*x]*Sqrt[3 + 5*x]),x]
 
output
(-4*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/45 + ((272*Sqrt[11/3]*Ellip 
ticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/5 - (202*Sqrt[11/3]*Elliptic 
F[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/5)/45
 

3.28.32.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 113
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m - 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/(d*f*(m + n + p + 1))), x] + Simp[1/(d*f*(m + n + p + 1))   Int[(a + b*x) 
^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m 
 - 1) + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m 
 + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] & 
& GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 129
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[ 
Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b*e - 
a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ 
[(b*e - a*f)/b, 0] && PosQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d 
*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(( 
-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ 
[((-d)*e + c*f)/f, 0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f 
/b]))
 

rule 176
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]* 
Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[h/f   Int[Sqrt[e + f*x]/(Sqrt[a + b*x 
]*Sqrt[c + d*x]), x], x] + Simp[(f*g - e*h)/f   Int[1/(Sqrt[a + b*x]*Sqrt[c 
 + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && Sim 
plerQ[a + b*x, e + f*x] && SimplerQ[c + d*x, e + f*x]
 
3.28.32.4 Maple [A] (verified)

Time = 1.33 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.43

method result size
default \(\frac {2 \sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}\, \left (33 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-136 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-900 x^{3}-690 x^{2}+210 x +180\right )}{675 \left (30 x^{3}+23 x^{2}-7 x -6\right )}\) \(140\)
elliptic \(\frac {\sqrt {-\left (-1+2 x \right ) \left (3+5 x \right ) \left (2+3 x \right )}\, \left (-\frac {4 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{45}+\frac {118 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{4725 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {544 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, \left (-\frac {7 E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{6}+\frac {F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{2}\right )}{4725 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(186\)
risch \(\frac {4 \left (-1+2 x \right ) \sqrt {3+5 x}\, \sqrt {2+3 x}\, \sqrt {\left (1-2 x \right ) \left (2+3 x \right ) \left (3+5 x \right )}}{45 \sqrt {-\left (-1+2 x \right ) \left (3+5 x \right ) \left (2+3 x \right )}\, \sqrt {1-2 x}}+\frac {\left (\frac {59 \sqrt {66+110 x}\, \sqrt {10+15 x}\, \sqrt {-110 x +55}\, F\left (\frac {\sqrt {66+110 x}}{11}, \frac {i \sqrt {66}}{2}\right )}{2475 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {272 \sqrt {66+110 x}\, \sqrt {10+15 x}\, \sqrt {-110 x +55}\, \left (\frac {E\left (\frac {\sqrt {66+110 x}}{11}, \frac {i \sqrt {66}}{2}\right )}{15}-\frac {2 F\left (\frac {\sqrt {66+110 x}}{11}, \frac {i \sqrt {66}}{2}\right )}{3}\right )}{2475 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}\right ) \sqrt {\left (1-2 x \right ) \left (2+3 x \right ) \left (3+5 x \right )}}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(241\)

input
int((1-2*x)^(3/2)/(2+3*x)^(1/2)/(3+5*x)^(1/2),x,method=_RETURNVERBOSE)
 
output
2/675*(1-2*x)^(1/2)*(2+3*x)^(1/2)*(3+5*x)^(1/2)*(33*5^(1/2)*(2+3*x)^(1/2)* 
7^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2)*EllipticF((10+15*x)^(1/2),1/35*70^(1/ 
2))-136*5^(1/2)*(2+3*x)^(1/2)*7^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2)*Ellipti 
cE((10+15*x)^(1/2),1/35*70^(1/2))-900*x^3-690*x^2+210*x+180)/(30*x^3+23*x^ 
2-7*x-6)
 
3.28.32.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 49, normalized size of antiderivative = 0.50 \[ \int \frac {(1-2 x)^{3/2}}{\sqrt {2+3 x} \sqrt {3+5 x}} \, dx=-\frac {4}{45} \, \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1} - \frac {5783}{30375} \, \sqrt {-30} {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right ) - \frac {272}{675} \, \sqrt {-30} {\rm weierstrassZeta}\left (\frac {1159}{675}, \frac {38998}{91125}, {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right )\right ) \]

input
integrate((1-2*x)^(3/2)/(2+3*x)^(1/2)/(3+5*x)^(1/2),x, algorithm="fricas")
 
output
-4/45*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1) - 5783/30375*sqrt(-30)*we 
ierstrassPInverse(1159/675, 38998/91125, x + 23/90) - 272/675*sqrt(-30)*we 
ierstrassZeta(1159/675, 38998/91125, weierstrassPInverse(1159/675, 38998/9 
1125, x + 23/90))
 
3.28.32.6 Sympy [F]

\[ \int \frac {(1-2 x)^{3/2}}{\sqrt {2+3 x} \sqrt {3+5 x}} \, dx=\int \frac {\left (1 - 2 x\right )^{\frac {3}{2}}}{\sqrt {3 x + 2} \sqrt {5 x + 3}}\, dx \]

input
integrate((1-2*x)**(3/2)/(2+3*x)**(1/2)/(3+5*x)**(1/2),x)
 
output
Integral((1 - 2*x)**(3/2)/(sqrt(3*x + 2)*sqrt(5*x + 3)), x)
 
3.28.32.7 Maxima [F]

\[ \int \frac {(1-2 x)^{3/2}}{\sqrt {2+3 x} \sqrt {3+5 x}} \, dx=\int { \frac {{\left (-2 \, x + 1\right )}^{\frac {3}{2}}}{\sqrt {5 \, x + 3} \sqrt {3 \, x + 2}} \,d x } \]

input
integrate((1-2*x)^(3/2)/(2+3*x)^(1/2)/(3+5*x)^(1/2),x, algorithm="maxima")
 
output
integrate((-2*x + 1)^(3/2)/(sqrt(5*x + 3)*sqrt(3*x + 2)), x)
 
3.28.32.8 Giac [F]

\[ \int \frac {(1-2 x)^{3/2}}{\sqrt {2+3 x} \sqrt {3+5 x}} \, dx=\int { \frac {{\left (-2 \, x + 1\right )}^{\frac {3}{2}}}{\sqrt {5 \, x + 3} \sqrt {3 \, x + 2}} \,d x } \]

input
integrate((1-2*x)^(3/2)/(2+3*x)^(1/2)/(3+5*x)^(1/2),x, algorithm="giac")
 
output
integrate((-2*x + 1)^(3/2)/(sqrt(5*x + 3)*sqrt(3*x + 2)), x)
 
3.28.32.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(1-2 x)^{3/2}}{\sqrt {2+3 x} \sqrt {3+5 x}} \, dx=\int \frac {{\left (1-2\,x\right )}^{3/2}}{\sqrt {3\,x+2}\,\sqrt {5\,x+3}} \,d x \]

input
int((1 - 2*x)^(3/2)/((3*x + 2)^(1/2)*(5*x + 3)^(1/2)),x)
 
output
int((1 - 2*x)^(3/2)/((3*x + 2)^(1/2)*(5*x + 3)^(1/2)), x)